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What is an isomorphism?

Example
P1 = {ax + b | a,b ∈ R}, has addition and scalar multiplication defined as
follows:

(a1x + b1) + (a2x + b2) = (a1 + a2)x + (b1 + b2),

k(a1x + b1) = (ka1)x + (kb1),

for all (a1x + b1), (a2x + b2) ∈ P1 and k ∈ R.

The role of the variable x is to distinguish a1 from b1, a2 from b2, (a1 + a2)
from (b1 + b2), and (ka1) from (kb1).



Example (continued)

This can be accomplished equally well by using vectors in R2.

R2 =

{[
a
b

] ∣∣∣∣ a, b ∈ R
}

where addition and scalar multiplication are defined as follows:[
a1

b1

]
+

[
a2

b2

]
=

[
a1 + a2

b1 + b2

]
, k

[
a1

b1

]
=

[
ka1

kb1

]

for all
[

a1

b1

]
,

[
a2

b2

]
∈ R2 and k ∈ R.



Definition
Let V and W be vector spaces, and T : V → W a linear transformation. T
is an isomorphism if and only if T is both one-to-one and onto (i.e.,
ker(T) = {0} and im(T) = W). If T : V → W is an isomorphism, then the
vector spaces V and W are said to be isomorphic, and we write V ∼= W.

ker(T)

T

V

W
~0

im(T)V W
T

General linear transformation T

ker(T) = {~0}

T

V

W
~0

im(T) = WV
T

Isomorphism T



Example
The identity operator on any vector space is an isomorphism.

Example

T : Pn → Rn+1 defined by

T(a0 + a1x + a2x2 + · · ·+ anxn) =


a0

a1

a2

...
an


for all a0 + a1x + a2x2 + · · ·+ anxn ∈ Pn is an isomorphism. To verify this,
prove that T is a linear transformation that is one-to-one and onto.
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Proving isomorphism of vector spaces

Problem
Prove that M22 and R4 are isomorphic.

Proof.
Let T : M22 → R4 be defined by

T
[

a b
c d

]
=


a
b
c
d

 for all
[

a b
c d

]
∈ M22.

It remains to prove that
1. T is a linear transformation;
2. T is one-to-one;
3. T is onto.



Solution (continued – 1. linear transformation)

Let A =

[
a1 a2

a3 a4

]
,B =

[
b1 b2

b3 b4

]
∈ M22 and let k ∈ R. Then

T(A) =


a1

a2

a3

a4

 and T(B) =


b1

b2

b3

b4

 .

⇓

T(A+B) = T
[

a1 + b1 a2 + b2

a3 + b3 a4 + b4

]
=


a1 + b1

a2 + b2

a3 + b3

a4 + b4

 =


a1

a2

a3

a4

+


b1

b2

b3

b4

 = T(A)+T(B)

⇓

T preserves addition.



Solution (continued – 1. linear transformation)
Also

T(kA) = T
[

ka1 ka2

ka3 ka4

]
=


ka1

ka2

ka3

ka4

 = k


a1

a2

a3

a4

 = kT(A)

⇓

T preserves scalar multiplication.

Since T preserves addition and scalar multiplication, T is a linear
transformation.



Solution (continued – 2. One-to-one)
By definition,

ker(T) = {A ∈ M22 | T(A) = 0}

=


[

a b
c d

] ∣∣∣∣∣∣∣∣ a,b, c, d ∈ R and


a
b
c
d

 =


0
0
0
0


 .

If A =

[
a b
c d

]
∈ ker T, then a = b = c = d = 0, and thus ker(T) = {022}.

⇓

T is one-to-one.



Solution (continued – 3. Onto)
Let

X =


x1

x2

x3

x4

 ∈ R4,

and define matrix A ∈ M22 as follows:

A =

[
x1 x2

x3 x4

]
.

Then T(A) = X, and therefore T is onto.

Finally, since T is a linear transformation that is one-to-one and onto, T is
an isomorphism. Therefore, M22 and R4 are isomorphic vector spaces. �



Example ( Other isomorphic vector spaces )

1. For all integers n ≥ 0, Pn ∼= Rn+1.
2. For all integers m and n, m, n ≥ 1, Mmn ∼= Rm×n.
3. For all integers m and n, m, n ≥ 1, Mmn ∼= Pmn−1.

You should be able to define appropriate linear transformations and prove
each of these statements.
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Characterizing isomorphisms

Theorem
Let V and W be finite dimensional vector spaces and T : V → W a linear
transformation. The following are equivalent.

1. T is an isomorphism.
2. If {~b1, ~b2, . . . , ~bn} is any basis of V, then {T(~b1),T(~b2), . . . ,T(~bn)} is a

basis of W.
3. There exists a basis {~b1, ~b2, . . . , ~bn} of V such that

{T(~b1),T(~b2), . . . ,T(~bn)} is a basis of W.

Proof.
(1) ⇒ (2): This is because

- One-to-one linear transformations preserve independent sets.
- Onto linear transformations preserve spanning sets.

(2) ⇒ (3) is trivial.



Proof. (Continued)

(3) ⇒ (1). We need to prove that T is both onto and one-to-one.

If T(~v) = ~0, write ~v = v1
~b1 + · · ·+ vn~bn where each vi is in R. Then

~0 = T(~v) = v1T(~b1) + · · ·+ vnT(~bn)

so v1 = · · · = vn = 0 by (3). Hence ~v = ~0, so ker T = {~0} and T is
one-to-one.

To show that T is onto, let ~w be any vecor in W. By (3) there exist
w1, . . . ,wn in R such that

~w = w1T(~b1) + · · ·+ wnT(~bn) = T(w1
~b1 + · · ·+ wn~bn)

Thus T is onto. �



Suppose V and W are finite dimensional vector spaces with
dim(V) = dim(W), and let

{~b1, ~b2, . . . , ~bn} and {~f1,~f2, . . . ,~fn}

be bases of V and W respectively. Then T : V → W defined by

T(~bi) =~fi for 1 ≤ k ≤ n

is a linear transformation that maps a basis of V to a basis of W. By the
previous Theorem, T is an isomorphism.

Conversely, if V and W are isomorphic and T : V → W is an isomorphism,
then (by the previous Theorem) for any basis {~b1, ~b2, . . . , ~bn} of V,
{T(~b1),T(~b2), . . . ,T(~bn)} is a basis of W, implying that dim(V) = dim(W).

This proves the next theorem.



Theorem
Finite dimensional vector spaces V and W are isomorphic if and only if
dim(V) = dim(W).

Corollary
If V is a vector space with dim(V) = n, then V is isomorphic to Rn.



Problem
Let V denote the set of 2× 2 real symmetric matrices. Then V is a vector
space with dimension three. Find an isomorphism T : P2 → V with the
property that T(1) = I2 (the 2× 2 identity matrix).

Solution

V =

{[
a b
b c

] ∣∣∣∣ a,b, c ∈ R
}

= span
{[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Let

B =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Then B is independent, and span(B) = V, so B is a basis of V. Also,
dim(V) = 3 = dim(P2). However, we want a basis of V that contains I2.



Solution (continued)
Let

B′ =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
.

Since B′ consists of dim(V) symmetric independent matrices, B′ is a basis
of V. Note that I2 ∈ B′. Define

T(1) =

[
1 0
0 1

]
,T(x) =

[
0 1
1 0

]
,T(x2) =

[
0 0
0 1

]
.

Then for all ax2 + bx + c ∈ P2,

T(ax2 + bx + c) =
[

c b
b a + c

]
,

and T(1) = I2.

By the previous Theorem, T : P2 → V is an isomorphism. �



Theorem
Let V and W be vector spaces, and T : V → W a linear transformation. If
dim(V) = dim(W) = n, then T is an isomorphism if and only if T is either
one-to-one or onto.

Proof.
(⇒) By definition, an isomorphism is both one-to-one and onto.

(⇐) Suppose that T is one-to-one. Then ker(T) = {~0}, so dim(ker(T)) = 0.
By the Dimension Theorem,

dim(V) = dim(im(T)) + dim(ker(T))

n = dim(im(T)) + 0

so dim(im(T)) = n = dim(W). Furthermore im(T) ⊆ W, so it follows that
im(T) = W. Therefore, T is onto, and hence is an isomorphism.



Proof. (continued)

(⇐) Suppose that T is onto. Then im(T) = W, so
dim(im(T)) = dim(W) = n. By the Dimension Theorem,

dim(V) = dim(im(T)) + dim(ker(T))

n = n + dim(ker(T))

so dim(ker(T)) = 0. The only vector space with dimension zero is the zero
vector space, and thus ker(T) = {~0}. Therefore, T is one-to-one, and hence
is an isomorphism. �
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Composition of transformations

Definition
Let V,W and U be vector spaces, and let

T : V → W and S : W → U

be linear transformations. The composite of T and S is

ST : V → U

where (ST)(~v) = S(T(~v)) for all ~v ∈ V. The process of obtaining ST from S
and T is called composition.

T S

V W U



Example
Let S : M22 → M22 and T : M22 → M22 be linear transformations such that

S(A) = −AT and T
[

a b
c d

]
=

[
b a
d c

]
for all A =

[
a b
c d

]
∈ M22.

Then

(ST)

[
a b
c d

]
= S

[
b a
d c

]
=

[
−b −d
−a −c

]
,

and

(TS)
[

a b
c d

]
= T

[
−a −c
−b −d

]
=

[
−c −a
−d −b

]
.

If a, b, c and d are distinct, then (ST)(A) 6= (TS)(A).

This illustrates that, in general, ST 6= TS.



Theorem
Let V,W,U and Z be vector spaces and

V T→ W S→ U R→ Z

be linear transformations. Then
1. ST is a linear transformation.
2. T1V = T and 1WT = T.
3. (RS)T = R(ST).



Problem ( The composition of onto transformations is onto )
Let V,W and U be vector spaces, and let

V T→ W S→ U

be linear transformations. Prove that if T and S are onto, then ST is onto.

Proof.
Let z ∈ U. Since S is onto, there exists a vector y ∈ W such that S(y) = z.
Furthermore, since T is onto, there exists a vector x ∈ V such that
T(x) = y. Thus

z = S(y) = S(T(x)) = (ST)(x),

showing that for each z ∈ U there exists and x ∈ V such that (ST)(x) = z.
Therefore, ST is onto. �



Problem ( The composition of one-to-one transformations is
one-to-one )
Let V,W and U be vector spaces, and let

V T→ W S→ U

be linear transformations. Prove that if T and S are one-to-one, then ST is
one-to-one.

The proof of this is left as an exercise.
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Inverses

Theorem
Let V and W be finite dimensional vector spaces, and T : V → W a linear
transformation. Then the following statements are equivalent.

1. T is an isomorphism.
2. There exists a linear transformation S : W → V so that

ST = 1V and TS = 1W.

In this case, the isomorphism S is uniquely determined by T:

if ~w ∈ W and ~w = T(~v), then S(~w) = ~v.

Given an isomorphism T : V → W, the unique isomorphism satisfying the
second condition of the theorem is the inverse of T, and is written T−1.



Remark ( Fundamental Identities (relating T and T−1) )
If V and W are vector spaces and T : V → W is an isomorphism, then
T−1 : W → V is a linear transformation such that

(T−1T)(~v) = ~v and (TT−1)(~w) = ~w

for each ~v ∈ V, ~w ∈ W. Equivalently,

T−1T = 1V and TT−1 = 1W.



Problem
The function T : P2 → R3 defined by

T(a + bx + cx2) =

 a − c
2b

a + c

 for all a + bx + cx2 ∈ P2

is a linear transformation (this is left for you to verify). Does T have an
inverse? If so, find T−1.



Solution
Since dim(P2) = 3 = dim(R3), it suffices to prove that T is either
one-to-one or onto.

Suppose a + bx + cx2 ∈ ker(T). Then
a − c = 0

2b = 0

a + c = 0

=⇒


a = 0

b = 0

c = 0

Therefore, ker(T) = {0}, and hence T is one-to-one. By our earlier
observation, it follows that T is onto, and thus is an isomorphism.



Solution (continued)

To find T−1, we need to specify T−1

 p
q
r

 for any

 p
q
r

 ∈ R3.

Let a + bx + cx2 ∈ P2, and suppose

T(a + bx + cx2) =

 p
q
r

 .

By the definition of T, p = a − c, q = 2b and r = a + c. We now solve for
a, b and c in terms of p, q and r. 1 0 −1 p

0 2 0 q
1 0 1 r

 → · · · →

 1 0 0 (r + p)/2
0 1 0 q/2
0 0 1 (r − p)/2

 .



Solution (continued)

We now have a = r+p
2

, b = q
2

and c = r−p
2

, and thus

T(a + bx + cx2) =

 p
q
r

 = T
( r + p

2
+

q
2
x +

r − p
2

x2
)

Therefore,

T−1

 p
q
r

 = T−1
(
T
( r + p

2
+

q
2
x +

r − p
2

x2
))

= (T−1T)
( r + p

2
+

q
2
x +

r − p
2

x2
)

=
r + p
2

+
q
2
x +

r − p
2

x2.

�



Definition

Let V be a vector space with dim(V) = n, let B = {~b1, ~b2, . . . , ~bn} be a
fixed basis of V, and let {~e1,~e2, . . . ,~en} denote the standard basis of Rn.
We define a transformation CB : V → Rn by

CB(a1
~b1 + a2

~b2 + · · ·+ an~bn) = a1~e1 + a2~e2 + · · ·+ an~en =


a1

a2

...
an

 .

Then CB is a linear transformation such that CB(~bi) = ~ei, 1 ≤ i ≤ n, and
thus CB is an isomorphism, called the coordinate isomorphism
corresponding to B.



Example

Let V be a vector space and let B = {~b1, ~b2, . . . , ~bn} be a fixed basis of V.
Then CB : V → Rn is invertible, and it is clear that C−1

B : Rn → V is defined
by

C−1
B


a1

a2

...
an

 = a1
~b1 + a2

~b2 + · · ·+ an~bn for each


a1

a2

...
an

 ∈ Rn.
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