Math 221: LINEAR ALGEBRA

Chapter 7. Linear Transformations

§7-3. Isomorphisms and Composition
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What is isomorphism?



What is an isomorphism?

Example
P1 ={ax+Db | a,b € R}, has addition and scalar multiplication defined as
follows:
(a1x+b1) + (azx+b2) = (a1 + a2)x+ (b1 + b2),
k(alx —+ b1) = (kal)x —+ (kbl),

for all (a1x 4 b1), (aex + b2) € P; and k € R.

The role of the variable x is to distinguish a; from b, az from ba, (a1 + a2)
from (by + bz), and (ka;) from (kby).



Example (continued)

This can be accomplished equally well by using vectors in RZ.

e-{[3

where addition and scalar multiplication are defined as follows:
al n ao B a1 + a2 Kk a1 B kai
by ba | | bi+bs |’ by | | kb

al a2 2
forall{b1 :|’|:b2 } € R* and k € R.

a,bGR}



Definition

Let V and W be vector spaces, and T : V — W a linear transformation. T
is an isomorphism if and only if T is both one-to-one and onto (i.e.,
ker(T) = {0} and im(T) = W). If T: V — W is an isomorphism, then the
vector spaces V and W are said to be isomorphic, and we write V = W.

General linear transformation T

G

Isomorphism T




Example

The identity operator on any vector space is an isomorphism.

Example
T : Py — R defined by
ag

a1

T(ao 4+ ai1x + asx” + - - - + anx") = | 22

an

for all ag + a1X + asx> + - -+ + apx" € P, is an isomorphism. To verify this,
prove that T is a linear transformation that is one-to-one and onto.



Proving vector spaces are isomorphic



Proving isomorphism of vector spaces

Problem

Prove that Mas and R* are isomorphic.

Proof.
Let T : Moy — R* be defined by

T[gg}:

It remains to prove that

for all {a b } € Mas.
c d

Q.0 o

1. T is a linear transformation;
2. T is one-to-one;
3. T is onto.



Solution (continued — 1. linear transformation)

Let A = [ Az },B: { by b ] € My, and let k € R. Then

as a4 b3 b4
a1 [ bl |
| a2 | b2
T(A) = as and T(B) = by
as | ba |
A
a; + by [ a; ] b1
B ar+br az+bx | | ax+by | | a by |
T(A+B) =T as+bs as+bs | | as+bs | | as + by | T(A)+T(B)
as + by | a4 | by
[

T preserves addition.



Solution (continued — 1. linear transformation)
Also

ka1 a1
. kal ka2 = kag o a2 o
T(kA) 7T[ ol } = | e | =K o | =KD
ka4 aq
!

T preserves scalar multiplication.

Since T preserves addition and scalar multiplication, T is a linear
transformation.



Solution (continued — 2. One-to-one)

By definition,
ker(T) = {A €M |T(A)=0}

{a b} a,b,c,de R and
c d

oo T
coc oo

IfA= { 2 } € kerT, then a=b =c=d =0, and thus ker(T) = {022}.

I

T is one-to-one.



Solution (continued — 3. Onto)
Let

eR?,
and define matrix A € Mas as follows:
A | X X
o X3 X4 ’
Then T(A) = X, and therefore T is onto.

Finally, since T is a linear transformation that is one-to-one and onto, T is
an isomorphism. Therefore, M2y and R* are isomorphic vector spaces. |



Example ( Other isomorphic vector spaces )

1. For all integers n > 0, P, = R**1,
2. For all integers m and n, m,n > 1, My,, = R™*",
3. For all integers m and n, m,n > 1, Mumn = Prn—1-

You should be able to define appropriate linear transformations and prove
each of these statements.



Characterizing isomorphisms



Characterizing isomorphisms

Theorem

Let V and W be finite dimensional vector spaces and T : V. — W a linear
transformation. The following are equivalent.

1. T is an isomorphism.

2. If {61,62, o 7’Bn} is any basis of V, then {T(Bﬂ,T(Bg), R T(l;n)} is a
basis of W.

3. There exists a basis {Bl, Bz, .. ,Bn} of V such that
{T(b1), T(b2),...,T(bn)} is a basis of W.

Proof.

(1) = (2): This is because
- One-to-one linear transformations preserve independent sets.
- Onto linear transformations preserve spanning sets.

(2) = (3) is trivial.



Proof. (Continued)

(3) = (1). We need to prove that T is both onto and one-to-one.

TV = 6, write V = V161 4+ ...+ vpby where each v; is in R. Then
0=T() =viT(b1) + -+ vaT(by)

SO V1 =---=vy =0 Dby (3). Hence ¥ =0, so ker T = {0} and T is
one-to-one.

To show that T is onto, let W be any vecor in W. By (3) there exist
Wi,..., Wy in R such that

W= WIT(EI) + -+ WnT(Bn) - T(ngl +--- 4+ ann)

Thus T is onto.



Suppose V and W are finite dimensional vector spaces with
dim(V) = dim(W), and let

{b1,b2,...,bu} and {fi,f,.... 0}
be bases of V and W respectively. Then T : V — W defined by
T(hi) =f for1<k<n

is a linear transformation that maps a basis of V to a basis of W. By the
previous Theorem, T is an isomorphism.

Conversely, if V and W are isomorphic and T : y - W is an isomorphism,
then (by the previous Theorem) for any basis {b1,ba,...,bn} of V,
{T(b1), T(b2),...,T(by)} is a basis of W, implying that dim(V) = dim(W).

This proves the next theorem.



Theorem

Finite dimensional vector spaces V and W are isomorphic if and only if
dim(V) = dim(W).

Corollary

If V is a vector space with dim(V) = n, then V is isomorphic to R™.



Problem

Let V denote the set of 2 x 2 real symmetric matrices. Then V is a vector
space with dimension three. Find an isomorphism T : Py — V with the
property that T(1) =I5 (the 2 x 2 identity matrix).

Solution

=l e

Let

et} o[ (2112 2]}
{[3 8L L)

Then B is independent, and span(B) =V, so B is a basis of V. Also,
dim(V) = 3 = dim(P2). However, we want a basis of V that contains I,.




Solution (continued)

s={[5 L[ L[S 0T

Since B’ consists of dim(V) symmetric independent matrices, B’ is a basis
of V. Note that I € B’. Define

Let

T(l):“ ?],T(x):[(l] H,T(XQ):{S H

Then for all ax? + bx + ¢ € Pa,
2 | c b
T(ax +bx+c)—[b a—i—c}’
and T(1) = L.

By the previous Theorem, T : Po — V is an isomorphism.



Theorem

Let V and W be vector spaces, and T : V — W a linear transformation. If
dim(V) = dim(W) = n, then T is an isomorphism if and only if T is either
one-to-one or onto.

Proof.

(=) By definition, an isomorphism is both one-to-one and onto.
(<) Suppose that T is one-to-one. Then ker(T) = {0}, so dim(ker(T)) = 0.
By the Dimension Theorem,
dim(V) = dim(im(T)) + dim(ker(T))
n = dim@im(T))+0

so dim(im(T)) = n = dim(W). Furthermore im(T) C W, so it follows that
im(T) = W. Therefore, T is onto, and hence is an isomorphism.



Proof. (continued)

(«=) Suppose that T is onto. Then im(T) = W, so
dim(im(T)) = dim(W) = n. By the Dimension Theorem,

dim(V) dim(im(T)) + dim(ker(T))
n = n+ dim(ker(T))
so dim(ker(T)) = 0. The only vector space with dimension zero is the zero

vector space, and thus ker(T) = {0}. Therefore, T is one-to-one, and hence
is an isomorphism. [ |



Composition of transformations



Composition of transformations

Definition
Let V, W and U be vector spaces, and let

T:V—-W and S:W—>U
be linear transformations. The composite of T and S is
ST:V—-U

where (ST)(V) = S(T(¥)) for all ¥ € V. The process of obtaining ST from S
and T is called composition.



Example

Let S : Mss — Mas and T : Moo — Moo be linear transformations such that

S(A):—AT and T[: 2}:{2 i] forallA=|:2 2:|EM22.

Then

and
a b —a —c —c —a
ST B B B e
If a, b, c and d are distinct, then (ST)(A) # (TS)(A).
This illustrates that, in general, ST # TS.



Theorem
Let V, W, U and Z be vector spaces and

viw3uiz
be linear transformations. Then
1. ST is a linear transformation.

2. Tlv =T and 1wT E
3. (RS)T = R(ST).



Problem ( The composition of onto transformations is onto )

Let V, W and U be vector spaces, and let
viw3u

be linear transformations. Prove that if T and S are onto, then ST is onto.

Proof.

Let z € U. Since S is onto, there exists a vector y € W such that S(y) = z.
Furthermore, since T is onto, there exists a vector x € V such that
T(x) =y. Thus

z=S(y) =5(T(x)) = (ST)(x),

showing that for each z € U there exists and x € V such that (ST)(x) = z.
Therefore, ST is onto. ]



Problem ( The composition of one-to-one transformations is
one-to-one )

Let V, W and U be vector spaces, and let
viwiu

be linear transformations. Prove that if T and S are one-to-one, then ST is
one-to-one.

The proof of this is left as an exercise.



Inverses



Inverses

Theorem

Let V and W be finite dimensional vector spaces, and T : V — W a linear
transformation. Then the following statements are equivalent.

1. T is an isomorphism.

2. There exists a linear transformation S: W — V so that
ST = lv and TS = lw.
In this case, the isomorphism S is uniquely determined by T:

if # €W and W =T(¥), then S(%) = ¥.

Given an isomorphism T : V — W, the unique isomorphism satisfying the
second condition of the theorem is the inverse of T, and is written T .



Remark ( Fundamental Identities (relating T and T—1) )

If V.and W are vector spaces and T : V — W is an isomorphism, then
T~!: W — V is a linear transformation such that

(T'T)(¥) =¥ and (TT ')(W) =W
for each v € V, w € W. Equivalently,

T !'T=1y and TT !'=1w.



Problem
The function T : Py — R? defined )%
a—c
T(a + bx + cx?) = 2b for all a + bx + cx® € Py
a-+c

is a linear transformation (this is left for you to verify). Does T have an
inverse? If so, find T~1.



Solution

Since dim(P2) = 3 = dim(R?), it suffices to prove that T is either
one-to-one or onto.

Suppose a + bx + cx? € ker(T). Then

a—c=20 a=10
2b=0 e b=0
a+c=0 c=0

Therefore, ker(T) = {0}, and hence T is one-to-one. By our earlier
observation, it follows that T is onto, and thus is an isomorphism.



Solution (continued)

p p

To find T!, we need to specify T™! | q | forany | q | € R
T T

Let a + bx + cx? € P2, and suppose
p

T(a+bx+cx’)= | q
T

By the definition of T, p =a — ¢, ¢ = 2b and r = a 4+ ¢. We now solve for
a,b and c in terms of p,q and r.

1 0 —1]p 1 0 0] (r+p)/2
02 0|lq|—=--—=]0 10| q/2
10 1|r 0 0 1|(—p)/2



Solution (continued)

Wenowhavea:%,b:%andc:%,andthus
2 P r+p 4 r—p_2
Tatberod)= | o | =T (FER 4 Gy T2R)
’ 2 2 2
Therefore,
T g | = 1 (r(EER 4 Ges I2R))
T 2 T2 2
—1 r+p  4g r—p 2
= @ (5E] )
(T ) 5 +2x+ 5 X
_ r+p , q_ r—p,
= 5 +2x+72 .



Definition

Let V be a vector space with dim(V) =n, let B = {131, ba,..., Bn} be a
fixed basis of V, and let {€1,65,...,€x} denote the standard basis of R".
We define a transformation Cg : V. — R" by

CB(algl +agho 4 -+ angn) = 2161 + a2 + - + anéy =

Then Cg is a linear transformation such that Cg (Bl) =&, 1 <i<n,and
thus Cg is an isomorphism, called the coordinate isomorphism
corresponding to B.



Example

Let V be a vector space and let B = {Bl, ba,..., Bn} be a fixed basis of V.
Then Cp : V — R" is invertible, and it is clear that Cgl :R™ — V is defined
by

al ai

ag ag

Cgl . — a1by & asbe + - - - 4 apby for each ) c R".

an an
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